A WEDDERBURN THEOREM FOR ALTERNATIVE ALGEBRAS WITH IDENTITY OVER COMMUTATIVE RINGS

BY

W. C. BROWN

ABSTRACT. In this paper, we study alternative algebras Δ over a commutative, associative ring R with identity. When Δ is finitely generated as an R-module, we define the radical J of Δ . We show that matrix units and split Cayley algebras can be lifted from Δ/J to Δ when R is a Hensel ring. We also prove the following Wedderburn theorem: Let Δ be an alternative algebra over a complete local ring R of equal characteristic. Suppose Δ is finitely generated as an R-module, and Δ/J is separable over \overline{R} (\overline{R} the residue class field of R). Then there exists an \overline{R} -subalgebra S of Δ such that $S+J=\Delta$ and $S\cap J=0$.

Introduction. Let Λ denote an alternative algebra over a field R. Let J denote the radical of Λ . It is well known that the Wedderburn theorem holds for alternative algebras. That is, if Λ is finite dimensional over R, and Λ/J is separable over R, then there exists a separable subalgebra S of Λ such that $S \oplus J = \Lambda$. If Λ is associative, the author in [4] has generalized this result to the case where R is a split Hensel ring. The purpose of this paper is to obtain similar results for alternative algebras over complete local rings R of equal characteristic. The precise result is as follows: Let R be a complete local ring of equal characteristic. Let R denote the residue class field of R. Let R be an alternative algebra over R such that R is finitely generated as an R-module and, R-module and R is separable over R. Then there exists an R-subalgebra R of R-subalgebra R-subal

In order to prove this result, we must carefully define what we mean by the radical J of Λ . Once this has been done, the results follow much as in the associative case.

Preliminaries. Throughout the rest of this paper, R will denote an associative, commutative ring with identity 1. Λ will always denote an alternative ring with identity. Thus, Λ is a not necessarily associative or commutative ring which satisfies the following two identities:

Received by the editors June 30, 1972.

AMS (MOS) subject classifications (1970). Primary 17D05.

Key words and phrases. Alternative algebra, Hensel ring, complete local ring.

146 W. C. BROWN

(1)
$$x^2y = x(xy), \quad yx^2 = (yx)x \quad \text{for all } x, y \in \Lambda.$$

It is not absolutely necessary to assume Λ has an identity under multiplication. In the process of proving the main results of this paper, we could always first adjoin an identity to Λ . But for convenience we shall always assume Λ contains an identity.

By the center $C(\Lambda)$ of Λ , we shall, as usual, mean the collection of all elements c in Λ which both commute and associate with all elements of Λ . We are now ready for the following definition: Λ is an R-algebra if there exists a ring homomorphism $\theta\colon R\to C(\Lambda)$ such that $\theta(1)$ is the identity of Λ . From now on we shall suppress θ and simply write $r\lambda$ instead of $\theta(r)\lambda$, $r\in R$ and $\lambda\in \Lambda$. If Λ is an R-algebra, then Λ is naturally an R-module. In particular, an ideal $J\subset \Lambda$ is an R-submodule of Λ , i.e. $RJ\subset J$. We say Λ is free, finitely generated, flat etc. over R if Λ is free, finitely generated, flat etc. as an R-module. Throughout this paper, we assume that all ring homomorphisms of any rings in question which have identities take the identity to the identity. By an R-algebra homomorphism from Λ to another alternative algebra Λ' over R, we shall mean an algebra homomorphism which is also an R-module homomorphism.

Many of the results which hold for alternative algebras over fields pass over to similar results in our setting. In particular, the Moufang identities [9, p. 28], Artin's theorem [9, Theorem 3.1] and the Peirce decomposition [9, pp. 32-37] hold for any alternative algebra Λ over R. We shall use these results freely whenever needed.

Now let R be a local ring, i.e. R is a Noetherian ring with exactly one maximal ideal m. Let π_0 denote the natural projection of R onto $\overline{R} = R/m$. We shall say that R is split if there exists a ring homomorphism $\epsilon_0 \colon \overline{R} \to R$ such that $\pi_0 \epsilon_0$ is the identity map on \overline{R} . It follows from [6, Theorem 9] that any complete local ring of equal characteristic is split. If R is split, then via ϵ_0 we may identify \overline{R} with a subring of R containing 1. If Λ is an alternative algebra over a split local ring R, and R is an ideal in R containing R, then R depends over a shall say that this sequence splits if there exists an R-algebra homomorphism R and R such that R is the identity map on R. Here R is of course the natural projection of R onto R.

Finally, we need the definition of a Hensel ring. Suppose R is a local ring (R need not be Noetherian here) with maximal ideal m. Let X be an indeterminate over R and consider the polynomial ring R[X]. We have a natural ring homomorphism $\sigma \colon R[X] \to \overline{R}[X]$ induced by π_0 . Namely if $f(X) = \sum r_i X^i \in R[X]$, then $\sigma(f) = \sum \pi_0(r_i) X^i \in \overline{R}[X]$. Let us write \overline{f} for $\sigma(f)$. R is called a Hensel ring if

every monic polynomial $f(X) \in R[X]$ satisfies the following condition: If there exist two relatively prime polynomials $g_1(X)$ and $g_2(X) \in \overline{R}[X]$ such that $\overline{f} = g_1g_2$ and g_1 is monic, then there exist two polynomials $h_1(X)$ and $h_2(X) \in R[X]$ such that $h_1h_2 = f$, $\overline{h}_1 = g_1$, $\overline{h}_2 = g_2$ and h_1 is monic. It is well known that complete local rings are Hensel rings [8, Theorem 30.4].

The author assumes the reader is familiar with the theory of associative algebras over Hensel rings [3].

I. The radical of an alternative algebra over a commutative ring. Let Λ be an alternative algebra over R which is finitely generated. Let $\Omega(R)$ denote the collection of all maximal ideals of R. Then for each $m \in \Omega(R)$, $\Lambda/m\Lambda$ is an alternative algebra over the field R/m. Since Λ is finitely generated as an R-module, $\Lambda/m\Lambda$ is finite dimensional over R/m. Thus, the radical of $\Lambda/m\Lambda$ is well defined and can be taken to be the collection of all properly nilpotent elements in $\Lambda/m\Lambda$ [9, Theorem 3.7]. Let J(m) be the ideal in Λ containing $m\Lambda$ and such that $J(m)/m\Lambda$ is the radical of $\Lambda/m\Lambda$. Thus, J(m) is the full inverse image of the radical of $\Lambda/m\Lambda$ under the natural projection $\Lambda \to \Lambda/m\Lambda$. We now define the radical J of Λ as follows:

$$J = \bigcap_{m \in \Omega(R)} J(m).$$

We note that if R is a field, then our definition of the radical of Λ agrees with the classical definition for alternative algebras. If we assume Λ is an associative algebra, then J is just the Jacobson radical of Λ [3, Corollary, p. 125]. In any case, we note that we have defined the radical of Λ for only those alternative algebras which are finitely generated over R. We shall need the following facts about J.

Proposition 1. Let Λ be an alternative algebra which is finitely generated over R. Let J be the radical of Λ . Then if $x \in J$, 1-x is a unit in Λ .

Proof. If Λ has a generating set of cardinality n over R, then for every $m \in \Omega(R)$ the dimension of $\Lambda/m\Lambda$ over R/m is less than or equal to n. Hence by [9, Theorem 3.7], $J(\Lambda/m\Lambda)^n = 0$. Thus, if $x \in J$, the image \overline{x} of x in $\Lambda/m\Lambda$ is nilpotent, i.e. $\overline{x}^n = 0$ for any m. So,

$$(\overline{1} - \overline{x})(\overline{1} + \overline{x} + \cdots + \overline{x}^{n-1}) = \overline{1}$$
 in $\Lambda/m\Lambda$.

Thus,

(3)
$$1 - (1-x)(1+x+\cdots+x^{n-1}) \in \bigcap_{m \in \Omega(R)} m\Lambda.$$

So, there is a $z \in \bigcap m\Lambda$ such that $1 = (1-x)(1+x+\cdots+x^{n-1})+z$. Now if $\lambda \in \Lambda$, then $\lambda = [(1-x)(1+x+\cdots+x^{n-1})]\lambda + z\lambda$. By Artin's theorem, $R[\lambda,x]$ is associative. Thus, $[(1-x)(1+x+\cdots+x^{n-1})]\lambda = (1-x)(\lambda+\cdots+x^{n-1}\lambda)$. So as R-modules, we have $\Lambda = (1-x)\Lambda + m\Lambda$ for every $m \in \Omega(R)$. It now follows

from Nakayama's lemma [3, Corollary, p. 124] that $\Lambda = (1 - x)\Lambda$. So there exists a $\lambda^1 \in \Lambda$ such that $(1 - x)\lambda^1 = 1$. In a similar manner, we show (1 - x) has a left inverse. Therefore, 1 - x has a unique two sided inverse. \square

An element $x \in \Lambda$ will be called quasi-regular if there exists an element $y \in \Lambda$ such that x + y - xy = x + y - yx = 0. The element y is called the quasi-inverse of x and is easily seen to be unique. It follows from [10, Lemma 2] that x is a quasi-regular if and only if 1 - x is a unit in Λ . As in the associative theory, we say an ideal $I \subset \Lambda$ is quasi-regular if every element of I is quasi-regular. It follows from Proposition 1 that I is a quasi-regular ideal. We shall need the following proposition:

Proposition 2 (McCrimmon). Let Λ be an alternative algebra, finitely generated over R. Let J be the radical of Λ and e an idempotent in Λ . Then $J \cap e\Lambda e = eJe$ is a quasi-regular ideal in the subalgebra $e\Lambda e$.

Proof. It follows easily from the Moufang identities that $e\Lambda e$ is a subalgebra of Λ . Since J is an ideal in Λ , we have $eJe \subset J \cap e\Lambda e$. Let $x \in J \cap e\Lambda e$. Then $x = e\lambda e$ for some $\lambda \in \Lambda$. Now $ex = e(e\lambda e) = e\lambda e = x$. Similarly xe = x. Hence, $x = exe \in eJe$. So, $eJe = J \cap e\Lambda e$.

Suppose $x \in J \cap e\Lambda e$. Then $x \in J$. So, x is a quasi-regular element in Λ . Let y be the quasi-inverse of x and consider $eye \in e\Lambda e$. Using the Moufang identities, we have x(eye) = ((xe)y)e = (xy)e = (x+y)e = xe+ye = x+ye. If we now multiply by e, we get e[x(eye)] = x+eye. Now x and $eye \in e\Lambda e$. Therefore, $x(eye) \in e\Lambda e$, and e[x(eye)] = x(eye). Thus, eye is a right quasi-inverse for x. A similar argument shows eye is a left quasi-inverse for x. Thus, x has a quasi-inverse eye in $e\Lambda e$. Since x was an arbitrary element of eJe, we have shown eJe is a quasi-regular ideal in $e\Lambda e$. \Box

If Λ is a finitely generated, associative algebra over R, and x is a quasi-regular element of Λ , then the quasi-inverse of x is of the form $r_1x + r_2x^2 + \cdots + r_nx^n$ for $r_i \in R$. We shall need this same result for alternative algebras.

Proposition 3. Let Λ be an alternative algebra, finitely generated over R. Let x be a quasi-regular element of Λ with quasi-inverse y. Then $y = r_1x + \cdots + r_nx^n$ for some n and $r_i \in R$.

Proof. Consider the subalgebra of Λ generated by x and y, i.e. R[x, y]. Since y is the quasi-inverse of x, yx = xy = x + y. Thus, R[x, y] is a commutative, associative ring. Since Λ is finitely generated over R, it follows from [3, Theorem 8] that both x and y satisfy monic polynomials with coefficients in R. Thus, R[x, y] is finitely generated as an R-module. The result now follows from applying [3, Theorem 9] to R[x, y]. \square

Finally we need to know how the radical behaves under homomorphic images.

Proposition 4. Let Λ_1 and Λ_2 be two alternative algebras over R which are finitely generated. Let J_1 and J_2 be the radicals of Λ_1 and Λ_2 respectively. Suppose $\sigma: \Lambda_1 \to \Lambda_2$ is an R-algebra epimorphism, then $\sigma(J_1) \subset J_2$.

Proof. For each $m \in \Omega(R)$, let $J_i(m)$ denote the pull back of the radical of $\Lambda_i/m\Lambda_i$ under the natural projection $\Lambda_i \to \Lambda_i/m\Lambda_i$. The map σ induces an R/m-algebra homomorphism $\sigma_m : \Lambda_1/m\Lambda_1 \to \Lambda_2/m\Lambda_2$ which is onto. So, we have the following commutative square of epimorphisms:

$$\begin{array}{c}
\Lambda_1 \xrightarrow{\sigma} \Lambda_2 \\
\downarrow \qquad \qquad \downarrow \qquad \downarrow \\
\Lambda_1/m\Lambda_1 \xrightarrow{\sigma_m} \Lambda_2/m\Lambda_2
\end{array}$$

Since the radical of $\Lambda_1/m\Lambda_1$ consists of all properly nilpotent elements and σ_m is onto, σ_m takes the radical of $\Lambda_1/m\Lambda_1$ into the radical of $\Lambda_2/m\Lambda_2$. Since $J_1(m)$ is mapped onto the radical of $\Lambda_1/m\Lambda_1$, it follows that $\sigma(J_1(m)) \subset J_2(m)$. Since this holds for every $m \in \Omega(R)$, we have $\sigma(\bigcap_{m \in \Omega(R)} J_1(m)) \subset \bigcap_{m \in \Omega(R)} J_2(m)$. Thus $\sigma(J_1) \subset J_2$. \square

II. Alternative algebras over Hensel rings. In this section, we shall assume that R is a Hensel ring. This type of assumption is inevitable in trying to prove a Wedderburn type theorem because Hensel rings are the only commutative rings which permit idempotents and matrix units to be lifted from Λ/J to Λ .

Theorem 1. Let Λ be a finitely generated alternative algebra over a Hensel ring R. Let I be an ideal in Λ . If $\overline{e}_1, \dots, \overline{e}_n$ are pairwise orthogonal idempotents in Λ/I , then there exist pairwise orthogonal idempotents e_1, \dots, e_n in Λ such that $\pi(e_i) = \overline{e}_i$. Here π is the natural projection of Λ onto Λ/I .

Proof. Suppose \overline{e} is an idempotent in Λ/I . Let $c \in \Lambda$ such that $\pi(c) = \overline{e}$. Set S = R[c]. Then S is a commutative extension of R which by [3, Theorem 8] is finitely generated as an R-module. $I \cap S$ is an ideal in S, and $S/I \cap S$ contains \overline{e} . Thus by [3, Theorem 24], S contains an idempotent e such that $\pi(e) = \overline{e}$. Hence, any idempotent in Λ/I can be lifted to Λ .

Now suppose e is an idempotent in Λ , and \overline{e}_1 is an idempotent in Λ/I such that $\overline{e}\,\overline{e}_1=\overline{e}_1\overline{e}=0$ ($\overline{e}=\pi(e)$). Then there exists an idempotent $e_1\in\Lambda$ such that $e_1e=ee_1=0$, and $\pi(e_1)=\overline{e}_1$. The proof of this is as follows: Let $T(e)=\{x\in\Lambda\mid xe=ex=0\}$, the set of two sided annihilators of e in Λ . Suppose $x,y\in T(e)$. Then (xy)e=(x,y,e)+x(ye)=(x,y,e)=-(x,e,y)=0. Here (x,y,z)=(xy)z-x(yz) is the associator of three elements. Thus, T(e) is a subalgebra of Λ and clearly consists of all elements of the form $\lambda-e\lambda-\lambda e+e\lambda e$, $\lambda\in\Lambda$. Hence

 $\pi(T(e)) = \{\overline{x} \in \Lambda/I \mid \overline{x}\overline{e} = \overline{e}\,\overline{x} = 0\} = T(\overline{e}), \ \overline{e}_1 \in T(\overline{e}) \ \text{by hypothesis.}$ Thus, there exists an element $c \in T(e)$ such that $\pi(c) = \overline{e}_1$. Now consider R(c) the subalgebra of Λ consisting of all polynomials in c without constant term. Then $R(c) \in T(e)$. It follows from [3, Theorem 21] that R(c) contains an idempotent e_1 such that $\pi(e_1) = \overline{e}_1$. Thus, Λ contains an idempotent e_1 with $\pi(e_1) = \overline{e}_1$ and $e_1e = 0 = ee_1$.

Now suppose $\overline{e}_1, \cdots, \overline{e}_n$ are pairwise orthogonal idempotents in Λ/l . Lift \overline{e}_1 to an idempotent $e_1 \in \Lambda$. By the second paragraph of this proof, lift \overline{e}_2 to an idempotent e_2 in Λ orthogonal to e_1 . Suppose we have lifted $\overline{e}_1, \cdots, \overline{e}_m$, $1 \le m < n$, to pairwise orthogonal idempotents e_1, \cdots, e_m in Λ . We can lift \overline{e}_{m+1} to an idempotent e_{m+1} in Λ which is orthogonal to $e = \sum_{i=1}^m e_i$. Then for i=1, \cdots, m , we have $e_i e_{m+1} = (ee_i e) e_{m+1} = e[e_i (ee_{m+1})] = 0$. Similarly, $e_{m+1} e_i = 0$. Thus, e_1, \cdots, e_{m+1} are pairwise orthogonal, and the proof is completed by induction. \square

For future reference, we note that a slight modification of the proof of Theorem 1 yields the following result: Let Λ be an alternative algebra over R which is not necessarily finitely generated as an R-module. Suppose I is an ideal in Λ for which $I^2=0$. Then if $\overline{e}_1,\cdots,\overline{e}_n$ are pairwise orthogonal idempotents in Λ/I , there exist pairwise orthogonal idempotents $e_1,\cdots,e_n\in\Lambda$ such that $\pi(e_i)=\overline{e}_i$. In this case, using the same S and R(c) as appears in the proof of Theorem 1, we note $I\cap S$ and $I\cap R(c)$ are nilpotent ideals in S and R(c) respectively. Thus, we may use the results in [7, Proposition 3.4, p. 42] to lift idempotents from $S/I\cap S$ to S and from $R(c)/I\cap R(c)$ to R(c). Hence, Theorem 1 holds in general if $I^2=0$.

For the next proposition, we do not require R to be a Hensel ring.

Proposition 5. Let Λ be an alternative algebra over R. Let I be a quasi-regular ideal in Λ . Let e and f be two pairwise orthogonal idempotents in Λ whose images in Λ/I we denote by \overline{e} and \overline{f} . Suppose there exist elements $\overline{a} \in \overline{e}(\Lambda/I)\overline{f}$ and $\overline{b} \in \overline{f}(\Lambda/I)\overline{e}$ such that $\overline{a}\overline{b} = \overline{e}$ and $\overline{b}\overline{a} = \overline{f}$; then there exist elements $a \in e\Lambda f$ and $b \in f\Lambda e$ such that ab = e, ba = f, $\pi(a) = \overline{a}$, and $\pi(b) = \overline{b}$.

Here π as usual denotes the natural projection of Λ onto Λ/I .

Proof. It is well known that (x, e, f) = 0 if e and f are pairwise orthogonal idempotents. Thus, $e\Lambda f$ and $f\Lambda e$ are unambiguous. Let $a_1 \in e\Lambda f$ and $b_1 \in f\Lambda e$ such that $\pi(a_1) = \overline{a}$, $\pi(b_1) = \overline{b}$. Then $a_1 = e\lambda_1 f$ and $b_1 = f\lambda_2 e$ for some $\lambda_1, \lambda_2 \in \Lambda$. Thus, $a_1b_1 = (e\lambda_1 f)(f\lambda_2 e) = e \cdot (\lambda_1 f)(f\lambda_2) \cdot e \in e\Lambda e$. Also, $a_1b_1 - e \in I$. Thus, $e - a_1b_1 \in I \cap e\Lambda e$ which by the proof of Proposition 2 is a quasi-regular ideal in $e\Lambda e$. Since $e - a_1b_1$ is quasi-regular in $e\Lambda e$, $e - (e - a_1b_1) = a_1b_1$ is a unit in $e\Lambda e$. Thus, there exists an $x \in e\Lambda e$ such that $(a_1b_1)x = e = x(a_1b_1)$. Similarly, there exists a $y \in f\Lambda f$ such that $y(b_1a_1) = f = (b_1a_1)y$.

Set $a=a_1$ and $b=b_1x$. Then $a\in e\Lambda f$. Since $x=e\lambda_3 e$, for some $\lambda_3\in \Lambda$, to show $b\in f\Lambda e$ we must show $(f\lambda_2 e)(e\lambda_3 e)\in f\Lambda e$. Now $f[(f\lambda_2 e)(e\lambda_3 e)]=-(f,f\lambda_2 e,e\lambda_3 e)+[f(f\lambda_2 e)](e\lambda_3 e)$. By the Moufang identities, $(f,f\lambda_2 e,e\lambda_3 e)=(f^2,f\lambda_2 e,e\lambda_3 e)=(f,f\lambda_2 e,f(e\lambda_3 e)+(e\lambda_3 e)f)=0$ since $f(e\lambda_3 e)=(fe)\cdot \lambda_3\cdot e=0$ $e\cdot \lambda_3\cdot (ef)=(e\lambda_3 e)f$. Also $f(f\lambda_2 e)=f\lambda_2 e$ by Artin's theorem. Hence, $f[(f\lambda_2 e)(e\lambda_3 e)]=(f\lambda_2 e)(e\lambda_3 e)$. Using the same techniques, we can show $[(f\lambda_2 e)(e\lambda_3 e)]=(f\lambda_2 e)(e\lambda_3 e)$. Hence $b_1x=(f\lambda_2 e)(e\lambda_3 e)\in f\Lambda e$.

Now $ab = a_1(b_1x) = -(a_1, b_1, x) + e$. But $-(a_1, b_1, x) = (e\lambda_1 f, e\lambda_3 e, f\lambda_2 e) = (e\lambda_1 f)(e\lambda_3 e) \cdot (f\lambda_2 e) - (e_1\lambda_1 f) \cdot (e\lambda_3 e)(f\lambda_2 e) = [e \cdot (\lambda_1 f)(e\lambda_3) \cdot e] \cdot (f\lambda_2 e) - (e\lambda_1 f) \cdot [e \cdot (\lambda_3 e)(f\lambda_2) \cdot e] = e \cdot [(\lambda_1 f)(e\lambda_3) \cdot e(f\lambda_2 e)] - [(e\lambda_1 f)e \cdot (\lambda_3 e)(f\lambda_2)] \cdot e = 0$. Thus ab = e.

In order to show ba=f, we first need $yb_1=b_1x$. Now the proof above shows $b_1a_1b_1\in f\Lambda e$. From this fact, one can easily argue that $(y,b_1a_1b_1,x)=0$ and $(y,b_1,a_1)=0$. These are routine arguments like the one above and will be omitted. We then have $yb_1=y(b_1e)=y\cdot [b_1\cdot (a_1b_1)x]$. But we have shown that $(a_1,b_1,x)=0$. So, $y(b_1e)=y\cdot [b_1\cdot (a_1b_1)x]=y\cdot (b_1\cdot a_1(b_1x))=y\cdot (b_1a_1b_1)x=y(b_1a_1b_1)\cdot x=((yb_1)a_1\cdot b_1)\cdot x=(y(b_1a_1)\cdot b_1)\cdot x=(fb_1)x=b_1x$. Thus, $yb_1=b_1x$. It now follows that $ba=(b_1x)a=(yb_1)a=y(b_1a)=f$.

To finish the proof, we note that $\pi(a) = \overline{a}$ and $\pi(b) = \overline{b}$. \square We can now prove the main result of this section.

Theorem 2. Let Λ be an alternative algebra over a Hensel ring R. Assume Λ is finitely generated over R, and I is a quasi-regular ideal in Λ . Suppose $\{\overline{e}_{ij} | i, j = 1, \cdots, n\}$ is a system of matrix units in Λ/I , then there exists a system of matrix units $\{e_{ij} | i, j = 1, \cdots, n\}$ in Λ such that $\pi(e_{ij}) = \overline{e}_{ij}$.

Proof. Since $\overline{e}_{11}, \cdots, \overline{e}_{nn}$ are pairwise orthogonal idempotents in Λ/l , there exist, by Theorem 1, pairwise orthogonal idempotents $e_1, \cdots, e_n \in \Lambda$ such that $\pi(e_i) = \overline{e}_{ii}$. Now for each $i = 1, \cdots, n$, we have $\overline{e}_{11} \overline{e}_{1i} = \overline{e}_{1i} = \overline{e}_{1i} \overline{e}_{ii}$, $\overline{e}_{ii} \overline{e}_{i1} = \overline{e}_{1i} \overline{e}_{i1}$. Thus, $\overline{e}_{1i} \in \overline{e}_{11} (\Lambda/l) \overline{e}_{ii}$, $\overline{e}_{i1} \in \overline{e}_{ii} (\Lambda/l) \overline{e}_{11}$ and $\overline{e}_{1i} \overline{e}_{i1} = \overline{e}_{1i}$, $\overline{e}_{i1} \overline{e}_{1i} = \overline{e}_{1i}$. Applying Proposition 5, we get elements $e_{i1} \in e_i \Lambda e_1$ and $e_{1i} \in e_1 \Lambda e_i$ such that $e_{i1} e_{1i} = e_i$, $e_{1i} e_{i1} = e_1$, $\pi(e_{1i}) = \overline{e}_{1i}$ and $\pi(e_{i1}) = \overline{e}_{i1}$. Put $e_{11} = e_1$ and $e_{ij} = e_{i1} e_{1j}$ for $i \neq 1$, $j \neq 1$. We shall show that $\{e_{ij} \mid i, j = 1, \cdots, n\}$ are the required matrix units of Λ .

We first note that $e_{ij} \in e_i \Lambda e_j$ because $e_{ij} = e_{i1} e_{1j} = (e_i \lambda_1 e_1)(e_1 \lambda_2 e_j)$ for elements $\lambda_1, \lambda_2 \in \Lambda$ [9, 3.17]. A simple argument involving the Moufang identities shows $e_i[(e_i \lambda_1 e_1)(e_1 \lambda_2 e_j)] = [(e_i \lambda_1 e_1)(e_1 \lambda_2 e_j)]e_j = e_{ij}$. Thus, $e_{ij} \in e_i \Lambda e_j$. We need to show that $e_{ij} e_{jk} = e_{ik}$ for all $i, j, k = 1, \cdots, n$.

Let us first show $e_{ij}e_{kl}=0$ if $k\neq j$. A linearized form of the Moufang identity [9, 3.5] is as follows:

$$(4) y \cdot (xa)z + y \cdot (za)x = (yx)a \cdot z + (yz)a \cdot x$$

for all x, y, z and $a \in \Lambda$. If we set $y = e_{ij}$, $x = e_k$, $a = e_{kl}$ and $z = e_l$ and use the fact that $e_{ij} \in e_i \Lambda e_j$, (4) becomes

(5)
$$e_{ij}^{e}_{kl} + e_{ij} \cdot (e_{l}^{e}_{kl}) e_{k} = (e_{ij}^{e}_{l}) e_{kl} \cdot e_{k}.$$

If k = l, then $e_{ij}e_{kl} = e_{ij}e_k = 0$. Thus, without loss of generality we may assume $k \neq l$. In this case, (5) becomes

(6)
$$e_{ij}e_{kl} = [(e_{ij}e_{l})e_{kl}]e_{kl}$$

If $l \neq j$, then (6) implies $e_{ij} e_{kl} = 0$. Thus, we may assume l = j. In this case, (6) becomes

(7)
$$e_{ij}e_{kj} = (e_{ij}e_{kj})e_{k}.$$

If k = i, (7) implies $e_{ij} e_{ij} = (e_{ij} e_{ij}) e_i = e_{ij} (e_{ij} e_i) = 0$. If i = j, $e_{ij} e_{kj} = e_i e_{kj} = 0$. Thus, we have reduced the proof to showing that $e_{ij} e_{kj} = 0$ when i, j and k are all distinct.

Since i, j and k are all distinct, we get $e_i(e_{ij}e_{kj}) = (e_{ij}, e_{ij}, e_{kj}) + e_{ij}e_{kj} = e_{ij}e_{kj}$. Thus, $e_{ij}e_{kj} \in e_i\Lambda$. Now $0 = (e_ie_{ij})e_{kj} = (e_i, e_{ij}, e_{kj}) + e_j(e_{ij}e_{kj})$. Since $e_{ij}e_{kj} \in e_i\Lambda$, $e_j(e_{ij}e_{kj}) = 0$. Thus, $0 = (e_j, e_{ij}, e_{kj})$. So, $0 = (e_{ij}, e_j, e_{kj}) = (e_{ij}e_{kj} - e_{ij}(e_je_{kj}) = e_{ij}e_{kj}$. Therefore, in all cases $e_{ij}e_{kl} = 0$ if $k \neq j$.

It remains to show that $e_{ij}e_{jk}=e_{ik}$. If i=j, we have $e_{ij}e_{jk}=e_{ik}=e_{ik}$. If k=j, we have $e_{ij}e_{jk}=e_{ij}e_{j}=e_{ik}$. Thus, we may assume $i\neq j$ and $j\neq k$. Now $e_{ij}e_{jk}=e_{ij}(e_{j1}e_{1k})=-(e_{ij},e_{j1},e_{1k})+(e_{ij}e_{j1})e_{1k}$. Using the previous result, one easily argues that $(e_{ij},e_{j1},e_{1k})=0$. So $e_{ij}e_{jk}=(e_{ij}e_{j1})e_{1k}$.

Now $e_{ij}e_{j1} = (e_{i1}e_{1j})e_{j1} = (e_{i1}, e_{1j}, e_{j1}) + e_{i1}(e_{1j}e_{j1})$. Again one may argue that $(e_{i1}, e_{1j}, e_{j1}) = 0$. We thus get $e_{ij}e_{j1} = e_{i1}$. Thus, $e_{ij}e_{jk} = (e_{ij}e_{j1})e_{1k} = e_{i1}e_{1k}$. Since $e_{ii} = e_{i}$ and $\pi(e_{ij}) = \overline{e}_{ij}$, the proof is complete. \square

The proof of Theorem 2 requires Theorem 1, Proposition 5 and well known identities for alternative rings. The proof of Proposition 5 does not require Λ to be finitely generated over R. Any ideal I in Λ whose square is zero is clearly a quasi-regular ideal. Thus, using the remark following Theorem 1, we could prove the following analogue of Theorem 2: Let Λ be an alternative algebra over R which is not necessarily finitely generated. Let I be an ideal in Λ such that $I^2 = 0$. Then if $\{\overline{e}_{ij} \mid i, j = 1, \cdots, n\}$ is a system of matrix units in Λ/I , there exists a system of matrix units $\{e_{ij}\} \in \Lambda$ such that $\pi(e_{ij}) = \overline{e}_{ij}$. We shall have use of this result in \Im III of this paper.

Let R_2 denote the ring of all 2×2 matrices with coefficients in R. R_2 is naturally equipped with an involution $x \to \overline{x}$ satisfying $x + \overline{x} \in R$ and $x\overline{x} \in R$. Namely, if $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $\overline{x} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. We shall say that an alternative algebra Λ over R is a split Cayley algebra if $\Lambda \cong R_2 \oplus \nu R_2$ where ν is an element such that $\nu^2 = 1$, and $x\nu = \nu \overline{x}$ for all $x \in R_2$.

Suppose Λ is an alternative algebra over a local ring R. Let m be the unique maximal ideal of R. If Λ is finitely generated over R, then the radical J of Λ is well defined. Since $J \supset m\Lambda$, Λ/J is naturally an R/m-algebra.

Theorem 3. Let Λ be an alternative algebra over a Hensel ring R. Suppose Λ is finitely generated over R, and Λ/J is a split Cayley algebra over R/m. Then there exists a split Cayley algebra Λ_0 over R contained in Λ such that $\pi(\Lambda_0) = \Lambda/J$.

Proof. In this proof, we denote $\pi(x)$ by [x] for $x \in \Lambda$. By hypothesis, $\Lambda/J = (R/m)_2 \oplus [\omega](R/m)_2$ is a split Cayley algebra over the field R/m. Now by Theorem 2, there exist matrix units $\{e_{ij} \mid i, j=1, 2\}$ in Λ such that $(R/m)_2 = \sum_{i,j=1}^2 (R/m)[e_{ij}]$. Set $e = e_{11} + e_{22}$. Then [e] = 1 the identity element of Λ/J . Thus, $1 - e \in J$. By Proposition 1, e is a unit in Λ . So, there exists a $z \in \Lambda$ such that ez = ze = 1. Since R[z, e] is an associative subalgebra of Λ , we have 0 = [(1 - e)e]z = (1 - e)(ez) = 1 - e. Thus $e_{11} + e_{22} = 1$.

The proof from this point on is similar to [9, 3.21]. We shall borrow freely from this result. Find f_{ij} ($i \neq j$) $\in \Lambda$ such that $[f_{ij}] = [\omega][e_{jj}]$. We may assume $f_{ij} \in e_{ii} \Lambda e_{jj}$. Also $e_{ji} f_{ij} = c_j \in J \cap \Lambda_{jj}$. Here Λ_{11} , Λ_{12} , Λ_{21} and Λ_{22} are the Peirce spaces arising from the idempotents e_{11} and e_{22} in Λ . Set $b_{ij} = f_{ij} - e_{ij} c_j$ for $i \neq j$. Then $b_{ij} \in \Lambda_{ij}$, $[b_{ij}] = [f_{ij}]$ and $e_{ji} b_{ij} = b_{ij} e_{ji} = 0$ for $i \neq j$. We also have $[b_{ij}][b_{ji}] = [f_{ij}][f_{ji}] = [e_{ii}]$. Thus, $b_{ij} b_{ji} = e_{ii} - a_i$ for some element $a_i \in J \cap \Lambda_{ii}$. Now $\Lambda_{ii} = e_{ii} \Lambda e_{ii}$; and, by Proposition 2, $J \cap \Lambda_{ii}$ is a quasi-regular ideal in Λ_{ii} . Thus, there exists an element $a_i' \in \Lambda_{ii}$ such that $(e_{ii} - a_i)(e_{ii} - a_i') = e_{ii} = (e_{ii} - a_i')(e_{ii} - a_i)$. Furthermore, Proposition 3 implies that a_i' is a polynomial in a_j without constant term. Now set

(8)
$$p_{12} = (e_{11} - a'_1)b_{12}$$
 and $p_{21} = b_{21}$.

We note that $p_{12} \in \Lambda_{12}$, $p_{21} \in \Lambda_{21}$, $[p_{12}] = [b_{12}] = [f_{12}]$ and $[p_{21}] = [b_{21}] = [f_{21}]$. We wish to show that $p_{ij}p_{ji} = e_{ii}$ for $i \neq j$. Now $p_{12}p_{21} = [(e_{11} - a_1')b_{12}]b_{21}$. These elements have the form $e_{11} - a_1' = e_{11}\lambda_1e_{11}$, $b_{12} = e_{11}\lambda_2e_{22}$ and $b_{21} = e_{22}\lambda_3e_{11}$ for some λ_1 , λ_2 and $\lambda_3 \in \Lambda$. From this, one can easily argue that $(e_{11} - a_1', b_{12}, b_{21}) = 0$. Thus, $p_{12}p_{21} = (e_{11} - a_1')(b_{12}b_{21}) = (e_{11} - a_1')(e_{11} - a_1) = e_{11}$. To show that $p_{21}p_{12} = e_{22}$, we need the following identities,

(9)
$$a_{i}b_{ij} = b_{ij}a_{j}, \qquad (i \neq j).$$

$$a_i'b_{ij} = b_{ij}a_j',$$

For (9), we have $a_i b_{ij} = (e_{ii} - b_{ij} b_{ji}) b_{ij} = b_{ij} - (b_{ij} b_{ji}) b_{ij} = b_{ij} - b_{ij} (b_{ji} b_{ij}) = b_{ij} - b_{ij} (e_{ji} - a_j) = b_{ij} - b_{ij} + b_{ij} a_j = b_{ij} a_j$. Therefore, (9) is proven.

(10) follows from (9) and the fact that a_i' is a polynomial in a_i . We first note that $(a_i, b_{ij}, a_i) = 0$. Thus using (9), we have

(11)
$$(b_{i,i}a_{i,j})(e_{i,i}-a_{i,j})=(e_{i,i}-a_{i,j})(b_{i,i}a_{i,j}).$$

Now $e_{ii} - a_i' \in Re_{ii}[a_i] \subset \Lambda_{ii}$. Thus, $e_{ii} - a_i'$ associates with $e_{ii} - a_i$ and $(b_{ij}a_j)$. Thus from (11), we get

(12)
$$(e_{i,i} - a'_{i})[(b_{i,i}a_{i})(e_{i,i} - a_{i})] = b_{i,i}a_{i}.$$

One can now directly argue that $(e_{ii} - a'_i, b_{ij} a_j, e_{jj} - a_j) = 0$. Thus, multiplying both sides of (12) by $(e_{ij} - a'_j)$, we get

(13)
$$(e_{ii} - a'_{i})(b_{ii}a_{i}) = (b_{ii}a_{i})(e_{ii} - a'_{i}).$$

Since $a_i + a'_i - a'_i a_i = 0$, we get $a'_i = (-a_i)(e_{ii} - a'_i)$. Thus using (9), (13) and the fact that $(e_{ii} - a'_i)$ is a polynomial in a_i with coefficients in Re_{ii} , we get

$$\begin{aligned} a_i'b_{ij} &= [(-a_i)(e_{ii} - a_i')]b_{ij} = (e_{ii} - a_i')(-a_ib_{ij}) = (e_{ii} - a_i')(-b_{ij}a_j) \\ &= (-b_{ij}a_j)(e_{jj} - a_j') = b_{ij}[(-a_j)(e_{jj} - a_j')] = b_{ij}a_j'. \end{aligned}$$

Therefore (10) is proven.

We can now prove $p_{21} p_{12} = e_{22}$. We first note that (9) and (10) imply $p_{12} = (e_{11} - a_1') b_{12} = b_{12} - a_1' b_{12} = b_{12} - b_{12} a_2' = b_{12} (e_{22} - a_2')$. Thus, $p_{21} p_{12} = b_{21} [b_{12} (e_{22} - a_2')] = (b_{21} b_{12}) (e_{22} - a_2') = (e_{22} - a_2) (e_{22} - a_2') = e_{22}$.

We next note that $e_{ij}p_{ji} = p_{ji}e_{ij} = 0$ if $i \neq j$. For $e_{12}p_{21} = e_{12}b_{21} = 0$ and $e_{21}p_{12} = e_{21} \cdot (e_{11} - a_1')b_{12} = e_{21}b_{12} \cdot (e_{22} - a_2') = 0$. Now set $v = p_{12} + p_{21}$. We note that $p_{ij} \in \Lambda_{ij}$, and thus $p_{ij}^2 = 0$ by [9, 3.20]. So $v^2 = (p_{12} + p_{21})^2 = p_{12}p_{21} + p_{21}p_{12} = e_{11} + e_{22} = 1$. We also have that [v] = [w]. Set $R_2 = \sum_{i,j=1}^2 Re_{ij} \subset \Lambda$. Then, $v \notin R_2$. One can easily show $vR_2 \cap R_2 = 0$. Thus, we can consider $\Lambda_0 = R_2 \oplus vR_2 \subset \Lambda$. Clearly $\pi(\Lambda_0) = \Lambda/J$. So the theorem will be complete if we show that $xv = v\overline{x}$ for all $x \in R_2$.

Let $x \in R_2$. Then $x = ae_{11} + be_{12} + ce_{21} + de_{22}$ for constants a, b, c and $d \in R$. Then $\overline{x} = de_{11} - be_{12} - ce_{21} + ae_{22}$, $xv = ap_{12} + be_{12}p_{12} + ce_{21}p_{21} + dp_{21}$, and $v\overline{x} = ap_{12} - bp_{12}e_{12} - cp_{21}e_{21} + dp_{21}$. But if x_{ij} , $y_{ij} \in \Lambda_{ij}$ ($i \neq j$), then $x_{ij}y_{ij} = -y_{ij}x_{ij}$ by [9, 3.21]. Thus, $xv = v\overline{x}$. \square

In Theorem 3, if we replace J by an ideal I whose square is zero, then we could drop the hypothesis that Λ is finitely generated over R. We would then have the following result: Suppose Λ is an alternative algebra over R, and I is an ideal in Λ such that $I^2=0$. Suppose Λ/I is a split Cayley algebra over $R/I\cap R$. Then there exists a split Cayley algebra Λ_0 over R contained in Λ such that $\pi(\Lambda_0)=\Lambda/I$. A proof of this remark would follow from the remark after Theorem 2 and the proof of [9, Lemma 3.21]. \square

III. A Wedderburn theorem for alternative algebras over complete local rings of equal characteristic. Throughout this section, we assume R is a split local ring. Thus, $\overline{R} = R/m$ is imbedded in R via some ring monomorphism ϵ . We shall drop ϵ and consider \overline{R} as contained in R.

Proposition 6. Let Λ be an alternative algebra (not necessarily finitely generated) over a split local ring R. Suppose I is an ideal in Λ which contains $m\Lambda$ and has square zero. Then if Λ/I is central separable over \overline{R} , $0 \to I \to \Lambda \to \Lambda/I \to 0$ splits as \overline{R} -algebras.

Proof. It is clearly sufficient to show that there exists an \overline{R} -subalgebra S of Λ such that $I \cap S = 0$ and $I + S = \Lambda$. Since Λ/I is central separable over the field \overline{R} , Λ/I is either a Cayley algebra of dimension eight over \overline{R} , or Λ/I is $n \times n$ matrices over an associative division algebra D. In the latter case, D has center \overline{R} and is finite dimensional over \overline{R} . In either case, let K be a field which contains \overline{R} , is finite dimensional over \overline{R} and splits Λ/I , i.e. $\Lambda/I \otimes_{\overline{R}} K$ is either a split Cayley algebra over K or $n' \times n'$ matrices $K_{n'}$ over K. Since Λ/I is finite dimensional over \overline{R} , such a field K exists. Write $K = \overline{R}(\epsilon_1, \dots, \epsilon_r)$ with $\epsilon_1 = 1$.

Now consider $\Lambda \otimes_{\overline{R}} K$. This is an alternative algebra over the field K, and $I \otimes_{\overline{R}} K$ is an ideal nilpotent of index two in $\Lambda \otimes_{\overline{R}} K$. Furthermore, $(\Lambda \otimes_{\overline{R}}^R K)/(I \otimes_{\overline{R}} K) \cong (\Lambda/I) \otimes_{\overline{R}} K$. Thus, the remarks made after Theorems 2 and 3 when applied to $\Lambda \otimes_{\overline{R}} K$ imply that there exists a K-subalgebra S' of $\Lambda \otimes_{\overline{R}} K$ such that $S' \oplus (I \otimes_{\overline{R}} K) = \Lambda \otimes_{\overline{R}} K$. The proof now proceeds exactly as in the associative case [1, pp. 47-48] to obtain an \overline{R} -subalgebra S of Λ with $S \oplus I = \Lambda$. \square

Proposition 7. Suppose Λ is an alternative algebra (not necessarily finitely generated) over a split local ring R. Suppose I is an ideal in Λ which contains $m\Lambda$ and has square zero. Then if Λ/I is separable over \overline{R} , $0 \to I \to \Lambda \to \Lambda/I \to 0$ splits as \overline{R} -algebras.

Proof. Λ/I separable over \overline{R} means Λ/I is finite-dimensional over \overline{R} , and Λ/I decomposes into a finite direct sum of ideals $S_1 \oplus \cdots \oplus S_n$. Each S_i is central simple over its center Z_i which in turn is a separable field over \overline{R} . Let the identities of the subalgebras S_i be $\overline{e}_1, \cdots, \overline{e}_n$. Then we can lift these pairwise orthogonal idempotents to pairwise orthogonal idempotents e_1, \cdots, e_n in Λ . Since $\overline{e}_1 + \cdots + \overline{e}_n = 1$, it follows that $e_1 + \cdots + e_n = 1$ in Λ . We also know that $0 \to e_i le_i \to e_i \Lambda e_i \to S_i \to 0$ is exact. Thus, for the purposes of proving the proposition, we may assume Λ/I is central simple over its center Z, and that Z is a finite separable field extension of \overline{R} .

Hence, we may assume that Λ/I is either $n \times n$ -matrices over an associative division algebra D having center Z, or that Λ/I is a Cayley algebra over Z. In either case, since Z is a finite separable extension of \overline{R} , there exists a field F such that F is a finite separable extension of \overline{R} , and $Z \otimes_{\overline{R}} F \cong \bigoplus_{i=1}^{l} \overline{e_i} F$ for pairwise orthogonal idempotents $\overline{e_1}, \dots, \overline{e_l}$ in $Z \otimes_{\overline{R}} F$. Consider the exact sesequence of F-algebras: $0 \to I \otimes_{\overline{R}} F \to \Lambda \otimes_{\overline{R}} F \to \overline{\Lambda}/I \otimes_{\overline{R}} F \to 0$. If Λ/I is as-

sociative, then the center of $\Lambda/I \otimes_{\overline{R}} F$ is $Z \otimes_{\overline{R}} F$ [2, Corollary 1.6]. If Λ/I is nonassociative, then Λ/I is a Cayley algebra over Z. Thus, $\Lambda/I = Q \oplus vQ$ for some quaternian algebra Q over Z. So $Q \otimes_{\overline{R}} F$ is an associative subalgebra of $\Lambda/I \otimes_{\overline{R}} F$. Hence the center $C(\Lambda/I \otimes_{\overline{R}} F)$ of $\Lambda/I \otimes_{\overline{R}} F$ is contained in the center $C(Q \otimes_{\overline{R}} F)$ of $Q \otimes_{\overline{R}} F$. Now Q is central separable over Z, and Z is separable over Z. Thus, Z is separable over Z. It again follows from [2, Corollary 1.6] that $C(Q \otimes_{\overline{R}} F) = Z \otimes_{\overline{R}} F$. Thus, in either case the center of Z0 is $Z \otimes_{\overline{R}} F = Z \otimes_{\overline{R}} F$. Thus, in either case the center of Z1.

Now from the remark after Theorem 1, we may lift $\{\overline{e}_1, \cdots, \overline{e}_l\}$ to pairwise orthogonal idempotents e_1, \cdots, e_l in $\Lambda \otimes_{\overline{R}} F$ whose sum is 1. For each $i = 1, \cdots, l$, $0 \to e_i(l \otimes_{\overline{R}} F)e_i \to e_i(\Lambda \otimes_{\overline{R}} F)e_i \to (\Lambda/l \otimes_{\overline{R}} F)\overline{e}_i \to 0$ is an exact sequence of F-algebras. $e_i(l \otimes_{\overline{R}} F)e_i$ is a nilpotent ideal of index two, and the center of $(\Lambda/l \otimes_{\overline{R}} F)\overline{e}_i$ is isomorphic to F. Since $\Lambda/l \otimes_{\overline{R}} F$ is separable over F, $(\Lambda/l \otimes_{\overline{R}} F)\overline{e}_i$ is central separable over F. Thus, Proposition 6 implies there exists an F-subalgebra S_i of $e_i(\Lambda \otimes_{\overline{R}} F)e_i$ such that $S_i \oplus e_i(l \otimes_{\overline{R}} F)e_i = e_i(\Lambda \otimes_{\overline{R}} F)e_i$. Setting $S' = S_1 + \cdots + S_l$, we get an F-subalgebra of $\Lambda \otimes_{\overline{R}} F$ such that $(I \otimes_{\overline{R}} F) \oplus S' = \Lambda \otimes_{\overline{R}} F$. Following the proof of Wedderburn's theorem in [1, pp. 47-48], we can then find an \overline{R} -subalgebra S of Λ such that $S \oplus I = \Lambda$. This immediately implies $0 \to I \to \Lambda \to \Lambda/I \to 0$ splits. \square

We can now prove the main theorem.

Theorem 4. Let Λ be an alternative algebra over a complete local ring R of equal characteristic. Suppose Λ is finitely generated as an R-module, and Λ/J is separable over $\overline{R} = R/m$. Then there exists an \overline{R} -subalgebra S of Λ such that $S+J=\Lambda$ and $S\cap J=0$.

Proof. We had noted in the preliminaries that a complete local ring R of equal characteristic contains a copy of its residue class field \overline{R} . We choose a copy of \overline{R} in R and regard Λ as an \overline{R} -algebra via this copy.

For each $n \ge 1$, define $J^{2^n} = J^{2^{n-1}}J^{2^{n-1}}$. We first prove that Λ is a complete Hausdorff space in its J^{2^n} -adic topology. By definition, J is the complete inverse image of the radical of $\Lambda/m\Lambda$. Since Λ is finitely generated as an R-module, $\Lambda/m\Lambda$ is a finite-dimensional alternative algebra. Hence, the radical of $\Lambda/m\Lambda$ is nilpotent. Therefore, there exists an $n_0 > 0$ such that $J^{2^{n_0}} \subset m\Lambda$. This implies $\bigcap_{n=1}^{\infty} J^{2^n} \subset \bigcap_{n=1}^{\infty} m^n \Lambda$. But by [11, Theorem 9, p. 262], $\bigcap_{n=1}^{\infty} m^n \Lambda = 0$. Thus, Λ is a Hausdorff space in its J^{2^n} -adic topology. By [11, Theorem 5, p. 256], Λ is a complete Hausdorff space in its $m\Lambda$ -adic topology. Thus, Λ is complete in its J^{2^n} -adic topology.

Now for each $n \ge 1$, we have

$$(14) 0 \to I/I^{2^n} \to \Lambda/I^{2^n} \to \Lambda/I \to 0$$

is an exact sequence of alternative algebras. Since Λ/J is separable over \overline{R} , one can easily argue, using Proposition 4, that J/J^{2n} is the radical of Λ/J^{2n} . If n=1, Proposition 7 implies (14) splits as \overline{R} -algebras. Hence, there exists an \overline{R} -subalgebra S_2 of Λ/J^2 such that $S_2 \oplus J/J^2 = \Lambda/J^2$. In particular, S_2 is isomorphic to Λ/J . If n=2, we have the following commutative diagram with exact rows:

$$0 \to J/J^2 \to \Lambda/J^2 \xrightarrow{\pi_2} \Lambda/J \to 0$$

$$\uparrow x_2 \qquad \uparrow x_2 \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \to J/J^4 \to \Lambda/J^4 \xrightarrow{\pi_4} \Lambda/J \to 0$$

Here x_2 is the natural projection of Λ/J^4 onto Λ/J^2 . Since x_2 is an R-algebra homomorphism, x_2 is also an \overline{R} -algebra homomorphism. Set $S_4' = x_2^{-1}(S_2)$. Then S_4' is an \overline{R} -subalgebra of Λ/J^4 . We note that

(16)
$$0 \to J^2/J^4 \to S_4' \to S_2 \cong \Lambda/J \to 0$$

is an exact sequence of \overline{R} -algebras. Thus, by Proposition 7, (16) splits. Hence, there exists an \overline{R} -subalgebra S_4 of Λ/J^4 such that $S_4 \oplus J^2/J^4 = S_4'$. Since $x_2(S_4) = S_2$, we have $\pi_4(S_4) = \Lambda/J$. From this it follows that $S_4 \oplus J/J^4 = \Lambda/J^4$. Thus (14) splits when n=2.

By induction, we can show that for each $n \ge 1$ there exists an \overline{R} -subalgebra S_{2^n} of Λ/J^{2^n} such that $S_{2^n} \oplus J/J^{2^n} = \Lambda/J^{2^n}$ and $x_{2^{n+1}}(S_{2^{n+1}}) = S_{2^n}$. Since Λ is complete in its J^{2^n} -adic topology, the inverse limit $\lim_{n \to \infty} \Lambda/J^{2^n}$ is isomorphic to Λ . If we set $S = \lim_{n \to \infty} S_{2^n}$ (see [11, pp. 305-306]), then S is an \overline{R} -subalgebra of Λ for which $S \oplus J = \Lambda$.

IV. A conjecture concerning Hensel rings. One may ask if there is a broader class of rings for which Theorem 4 holds. The completeness of R was used heavily in the proof of Theorem 4, but Theorems 1, 2 and 3 seem to suggest that Theorem 4 may hold if R is a split Hensel ring. The author conjectures that Theorem 4 holds if we assume R is a split Hensel ring instead of R being a complete local ring. In view of [5, Theorem], this would be the broadest class of local rings for which one could hope to prove Theorem 4.

REFERENCES

- 1. A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ., vol. 24, Amer. Math. Soc., Providence, R. I., 1939. MR 1, 99.
- 2. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409. MR 22 #12130.
- 3. G. Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119-150. MR 12, 669.

- 4. W. C. Brown, Strong inertial coefficient rings, Michigan Math. J. 17 (1970), 73-84. MR 41 #8402.
- 5. W. C. Brown and E. C. Ingraham, A characterization of semilocal inertial coefficient rings, Proc. Amer. Math. Soc. 26 (1970), 10-14. MR 41 #5354.
- 6. I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54-106. MR 7, 509.
- 7. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., 1956. MR 18 #373.
- 8. M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., vol. 13, Interscience, New York, 1962. MR 27 #5790.
- 9. S. Schafer, Introduction to non associative algebras, Academic Press, New York, 1966.
- 10. M. F. Smiley, The radical of an alternative ring, Ann. of Math. (2) 49 (1948), 702-709. MR 10, 6.
- 11. O. Zariski and P. Samuel, Commutative algebra, Vol. II, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823